Categories
Hackster.io

Assembling the NVIDIA Jetson Nano “JetBot”

We don’t always have exactly what we need on hand, but that won’t stop us from building our little AI robot! Based on the NVIDIA Jetson Nano, the JetBot is a useful platform for developing your own AI applications.
Have you worked with the Jetson Nano? Take the developer survey now! https://www.surveymonkey.com/r/jetson-nano-survey

// https://nvda.ws/3i63zBe
// https://developer.nvidia.com/embedded/learn/get-started-jetson-nano-devkit
// https://github.com/NVIDIA-AI-IOT/jetbot/wiki
// https://www.hackster.io/videos/315
// https://www.hackster.io/nvidia/products/nvidia-jetson-nano-developer-kit

Categories
IEEE Spectrum

For Two Power Grid Experts, Hurricane Maria Became a Huge Experiment

In research, sometimes the investigator becomes part of the experiment. That’s exactly what happened to Efraín O’Neill-Carrillo and Agustín Irizarry-Rivera, both professors of electrical engineering at the University of Puerto Rico Mayagüez, when Hurricane Maria hit Puerto Rico on 20 September 2017. Along with every other resident of the island, they lost power in an islandwide blackout that lasted for months.

The two have studied Puerto Rico’s fragile electricity infrastructure for nearly two decades and, considering the island’s location in a hurricane zone, had been proposing ways to make it more resilient.

They also practice what they preach. Back in 2008, O’Neill-Carrillo outfitted his home with a 1.1-kilowatt rooftop photovoltaic system and a 5.4-kilowatt-hour battery bank that could operate independently of the main grid. He was on a business trip when Maria struck, but he worried a bit less knowing that his family would have power.

Irizarry-Rivera [top] wasn’t so lucky. His home in San Germán also had solar panels. “But it was a grid-tied system,” he says, “so of course it wasn’t working.” It didn’t have storage or the necessary control electronics to allow his household to draw electricity directly from the solar panels, he explains.

“I estimated I wouldn’t get [grid] power until March,” Irizarry-Rivera says. “It came back in February, so I wasn’t too far off.” In the meantime, he spent more than a month acquiring and installing batteries, charge controllers, and a new stand-alone inverter. His family then relied exclusively on solar power for 101 days, until grid power was restored.

In “How to Harden Puerto Rico’s Grid Against Hurricanes,” the two engineers describe how Puerto Rico could benefit from community microgrids made up of similar small PV systems. The amount of power they produce wouldn’t meet the average Puerto Rican household’s typical demand. But, Irizarry-Rivera points out, you quickly learn to get by with less.

“We got a lot of things done with 4 kilowatt-hours a day,” he says of his own household. “We had lighting and our personal electronics working, we could wash our clothes, run our refrigerator. Everything else is just luxuries and conveniences.”

This article appears in the November 2019 print issue as “After Maria.”

Categories
Hackster.io

Check Out These Mechanical Japanese Zen Garden Kinetic Art Pieces

Unlike paintings or sculptures, kinetic art relies on movement to capture the eye and provide meaning. How exactly that is implemented is just as subjective as any other kind of art and is up to the artist to determine. And, as with other art forms, kinetic art requires both technical skill and artistic vision. A painter needs to be capable of precise brush strokes, while a kinetic artist needs to be skilled with their fabrication tools of choice. These mechanical zen gardens, created by Jo Fairfax, are a fantastic example of what that kind of skill and vision can achieve.

These art pieces are, of course, inspired by traditional Japanese zen gardens. Those are intended to facilitate tranquility as the “gardener” carefully brushes the sand. Fairfax’s mechanical zen gardens do something similar, except that they do it all on their own. His reinterpretation of the zen garden consists of a large box with a clear cover. The box is filled with fine iron filings. As a person approaches a mechanical zen garden, it will spring to life and begin drawing patterns in the sand-like iron filings.

The mechanism used to draw the patterns is what makes this project particularly interesting to us. Inside of the box and underneath a barrier separating it from the iron filings, there is a motorized arm covered in an array of electromagnets. An Arduino Uno board controls both the movement of the arm and if each magnet is activated. By activating the magnets at specific points through the arm’s movement cycle, a variety of geometric patterns can be drawn. Fairfax has produced at least a couple of these mechanical zen gardens, though the only major difference between them appears to be their shape and the movement patterns of the motorized arms.

Go to Source
Author: Cameron Coward

Categories
IEEE Spectrum

First Look: 2020 Porsche Taycan Electric Car

The Taycan isn’t exactly a ground-breaking electric car, but with a starting price of $150,000, it seems likely to be a profitable one
Categories
ScienceDaily

‘MasSpec Pen’ for accurate cancer detection during surgery

A major challenge for cancer surgeons is to determine exactly where a tumor starts and where it ends. Removing too much tissue can impair normal functions, but not taking enough can mean the disease could recur. The “MasSpec Pen,” a handheld device in development, could someday enable surgeons to distinguish between cancerous and healthy tissue with greater certainty in seconds, while in the operating room. Today, researchers report first results of its use in human surgeries.

The researchers will present their findings at the American Chemical Society (ACS) Fall 2019 National Meeting & Exposition.

“It’s been shown with extensive clinical data that highly effective surgeries are those that remove the most cancer, but also preserve the most normal tissue,” says principal investigator Livia Eberlin, Ph.D. “We created the MasSpec Pen because we thought it would be incredible if there was a technology that could actually provide molecular information right in the operating room in living tissues within a time frame that could expedite surgical decisions.”

Surprisingly, the most common method that medical professionals currently use to determine tumor margins or verify a diagnosis is 100 years old: histopathology. With this technique, a tissue sample is extracted during surgery and taken to a laboratory. The sample is flash-frozen, sectioned, stained and examined with a microscope. In total, this procedure can take an average of 30 minutes. Meanwhile, the patient, who is still under anesthesia, and the surgeon are left waiting. In addition, while histopathology is effective for many surgeries, especially for cancers, the process can be subjective because artifacts from the freezing process can complicate interpretation, Eberlin explains.

To overcome these challenges, Eberlin and colleagues at the University of Texas at Austin developed the MasSpec Pen, a handheld and biocompatible device connected to a high-performance mass spectrometer. The device rapidly identifies the molecular profile of tissue exposed during a surgery by first depositing a small droplet of water on the tissue surface for about three seconds. Next, the droplet is transferred to the mass spectrometer, where molecules from the tissue are identified. Finally, machine learning algorithms comb through the molecular information and provide a predictive diagnosis that surgeons can act on.

“We have developed the MasSpec Pen so that the surgeon just has to touch the tissue with the pen, and trigger the system with a foot pedal,” Eberlin says. “From there, everything is coded and automated so that the whole process is completed in under 10 seconds.”

So far the MasSpec Pen has been tested on more than 800 human tissues ex vivo, including normal and cancerous breast, brain, pancreatic, thyroid, lung and ovarian tissues. The team is now testing the MasSpec Pen in vivo, in an ongoing clinical study at the Texas Medical Center with human patients during thyroid, breast and pancreatic cancer surgeries. Freshly excised patient tissue also is being analyzed and is showing promising results.

“We are continuing research and development of this technology in my lab by continuing to improve our technology and validating its performance across different cancer types,” Eberlin says. “We are also exploring new applications in surgery including minimally invasive surgical procedures, as well as outside the operating room in forensics and agricultural applications.”

Story Source:

Materials provided by American Chemical Society. Note: Content may be edited for style and length.

Go to Source
Author:

Categories
Hackster.io

Disney Develops Simulation Software to Minimize Animatronic Jitter

In an ideal world, robots and animatronic puppets would follow animations exactly. But in the real world, physics come into play. Inertia often creates oscillations in materials that have even the tiniest bit of flexibility. That results in jittery motion that can be quite noticeable. That can throw off the precision of robots, and break the immersion of animatronic puppets. To optimize their animatronics and overcome that jitter, Disney Research has developed simulation software that can produce smooth animations.

The goal here is, of course, to produce more lifelike animatronic puppets for Disney’s various theme parks. They already make very sophisticated robotic animatronics, but those are still bound by the laws of physics. Even a simple waving motion can cause a character’s arm to develop oscillations that make the movement seem unnatural and push the character into the uncanny valley. The simulation software they designed takes into account the physical properties of the materials involved in order to optimize the motor acceleration of a puppet’s joints and minimize those oscillations.

With this software, animators can build a digital puppet that matches the physical one. They can then assign materials to the components, which allows the software to calculate how they will flex during movement. The animators choose which movements the puppet will make — just like they normally would — and the software smooths out the motor commands in order to avoid or cancel out oscillations. As you can see in the video, it can make a huge difference in the puppet’s real world movements , particularly for puppets that have thin, lightweight skeletons or that need to perform quick motions. This software could improve both the performance of Disney’s puppets, and robots in other industries.

Go to Source
Author: Cameron Coward

Categories
ScienceDaily

Slow electrons to combat cancer

Slow electons can be used to destroy cancer cells — but how exactly this happens has not been well understood. Now scientists have been able to demonstrate that a previously little-observed effect actually plays a pivotal role: Due to a process called interatomic Coulombic decay, an ion can pass on additional energy to surrounding atoms. This frees a huge number of electrons, with precisely the right amount of energy to cause optimal damage to the DNA of the cancer cells.

Ion beams are often used today in cancer treatment: this involves electrically charged atoms being fired at the tumour to destroy cancer cells. Although, it’s not actually the ions themselves that cause the decisive damage. When ions penetrate through solid material, they can share part of their energy with many individual electrons, which then continue to move at relatively low speed — and it is precisely these electrons that then destroy the DNA of the cancer cells.

This mechanism is complex and not yet fully understood. Researchers at TU Wien have now been able to demonstrate that a previously little-observed effect actually plays a pivotal role in this context: owing to a process called interatomic Coulombic decay, an ion can pass on additional energy to surrounding atoms. This frees a huge number of electrons, with precisely the right amount of energy to cause optimal damage to the DNA of the cancer cells. In order to understand and further improve the particular effectiveness of ion therapy, this mechanism absolutely has to be taken into account. The results were recently published in the specialist publication Journal of Physical Chemistry Letters.

One fast particle — or lots of slow ones

When a charged particle penetrates a material at great speed — such as human tissue — it leaves a giant atomic mess in its wake: “This can trigger a whole cascade of effects,” says Janine Schwestka, lead author of the recent publication, who is currently working on her dissertation in the team led by Prof. Friedrich Aumayr and Dr Richard Wilhelm. When the ion moves through other atoms, these and other particles can become ionised, fast electrons fly around and then collide with other particles. Ultimately, a fast, charged ion can trigger a particle shower of hundreds of electrons each with much lower energy.

In everyday life, we are used to fast objects having more dramatic effects than slower ones — a football kicked with full force causes much more damage in a china shop than one that is gently rolled in. At an atomic level, however, this does not apply: “The likelihood of a slow electron destroying a DNA strand is much greater. Conversely, an extremely fast electron normally just flies right past the DNA molecule without leaving a trace,” explains Janine Schwestka.

From one electron shell to another

The team from TU Wien recently took a closer look at an extremely special effect — namely, interatomic Coulombic decay. “The ion’s electrons can assume different states. Depending on how much energy they have, they can be located in one of the inner shells, close to the nucleus, or in an outer shell,” says Janine Schwestka. Not all possible electron spaces are occupied. If an electron shell in the medium energy range is free, an electron can then cross over to there from a shell with higher energy. This releases energy, which can then be passed to the material via interatomic Coulombic decay: “The ion transfers this energy to several atoms in the direct vicinity at the same time. One electron is detached from each of these atoms but because the energy is divided among several atoms we are talking about lots of really slow electrons,” explains Schwestka.

Xenon and graphene

With the help of an ingenious experimental setup, it has now been possible to prove the efficacy of this process. Multiply charged xenon ions are shot at a graphene layer. Electrons from the outer xenon shells switch to a position in another shell with less energy, causing electrons to be detached from numerous carbon atoms in the graphene layer, which are then recorded by a detector, so as to measure their energy. “In fact, in this way, we were able to show that interatomic Coulombic decay plays a vital role in generating a large number of free electrons in the material,” says Prof. Friedrich Aumayr.

In order to correctly describe the interaction of ion beams with solid materials or organic tissues, this effect absolutely must be taken into account. This is important, on one hand, for optimising ion beam therapies for treating cancer, but also for other important areas, such as protecting the health of space station crews, where you are exposed to constant particle bombardment from cosmic radiation.

Go to Source
Author: