Categories
ScienceDaily

Scientists discover volcanoes on Venus are still active

A new study identified 37 recently active volcanic structures on Venus. The study provides some of the best evidence yet that Venus is still a geologically active planet. A research paper on the work, which was conducted by researchers at the University of Maryland and the Institute of Geophysics at ETH Zurich, Switzerland, was published in the journal Nature Geoscience on July 20, 2020.

“This is the first time we are able to point to specific structures and say ‘Look, this is not an ancient volcano but one that is active today, dormant perhaps, but not dead,'” said Laurent Montési, a professor of geology at UMD and co-author of the research paper. “This study significantly changes the view of Venus from a mostly inactive planet to one whose interior is still churning and can feed many active volcanoes.”

Scientists have known for some time that Venus has a younger surface than planets like Mars and Mercury, which have cold interiors. Evidence of a warm interior and geologic activity dots the surface of the planet in the form of ring-like structures known as coronae, which form when plumes of hot material deep inside the planet rise through the mantle layer and crust. This is similar to the way mantle plumes formed the volcanic Hawaiian Islands.

But it was thought that the coronae on Venus were probably signs of ancient activity, and that Venus had cooled enough to slow geological activity in the planet’s interior and harden the crust so much that any warm material from deep inside would not be able to puncture through. In addition, the exact processes by which mantle plumes formed coronae on Venus and the reasons for variation among coronae have been matters for debate.

In the new study, the researchers used numerical models of thermo-mechanic activity beneath the surface of Venus to create high-resolution, 3D simulations of coronae formation. Their simulations provide a more detailed view of the process than ever before.

The results helped Montési and his colleagues identify features that are present only in recently active coronae. The team was then able to match those features to those observed on the surface of Venus, revealing that some of the variation in coronae across the planet represents different stages of geological development. The study provides the first evidence that coronae on Venus are still evolving, indicating that the interior of the planet is still churning.

“The improved degree of realism in these models over previous studies makes it possible to identify several stages in corona evolution and define diagnostic geological features present only at currently active coronae,” Montési said. “We are able to tell that at least 37 coronae have been very recently active.”

The active coronae on Venus are clustered in a handful of locations, which suggests areas where the planet is most active, providing clues to the workings of the planet’s interior. These results may help identify target areas where geologic instruments should be placed on future missions to Venus, such as Europe’s EnVision that is scheduled to launch in 2032.

Story Source:

Materials provided by University of Maryland. Note: Content may be edited for style and length.

Go to Source
Author:

Categories
ScienceDaily

A binary star as a cosmic particle accelerator

Scientists have identified the binary star Eta Carinae as a new kind of source for very high-energy (VHE) cosmic gamma-radiation. Eta Carinae is located 7500 lightyears away in the constellation Carina in the Southern Sky and, based on the data collected, emits gamma rays with energies up to 400 gigaelectronvolts (GeV), some 100 billion times more than the energy of visible light.

With a specialised telescope in Namibia a DESY-led team of researchers has proven a certain type of binary star as a new kind of source for very high-energy cosmic gamma-radiation. Eta Carinae is located 7500 lightyears away in the constellation Carina (the ship’s keel) in the Southern Sky and, based on the data collected, emits gamma rays with energies all the way up to 400 gigaelectronvolts (GeV), some 100 billion times more than the energy of visible light. The team headed by DESY’s Stefan Ohm, Eva Leser and Matthias Füßling is presenting its findings, made at the gamma-ray observatory High Energy Stereoscopic System (H.E.S.S.), in the journal Astronomy & Astrophysics. An accompanying multimedia animation explains the phenomenon. “With such visualisations we want to make the fascination of research tangible,” emphasises DESY’s Director of Astroparticle Physics, Christian Stegmann.

Eta Carinae is a binary system of superlatives, consisting of two blue giants, one about 100 times, the other about 30 times the mass of our sun. The two stars orbit each other every 5.5 years in very eccentric elliptical orbits, their separation varying approximately between the distance from our Sun to Mars and from the Sun to Uranus. Both these gigantic stars fling dense, supersonic stellar winds of charged particles out into space. In the process, the larger of the two loses a mass equivalent to our entire Sun in just 5000 years or so. The smaller one produces a fast stellar wind travelling at speeds around eleven million kilometres per hour (about one percent of the speed of light).

A huge shock front is formed in the region where these two stellar winds collide, heating up the material in the wind to extremely high temperatures. At around 50 million degrees Celsius, this matter radiates brightly in the X-ray range. The particles in the stellar wind are not hot enough to emit gamma radiation, though. “However, shock regions like this are typically sites where subatomic particles are accelerated by strong prevailing electromagnetic fields,” explains Ohm, who is the head of the H.E.S.S. group at DESY. When particles are accelerated this rapidly, they can also emit gamma radiation. In fact, the satellites “Fermi,” operated by the US space agency NASA, and AGILE, belonging to the Italian space agency ASI, already detected energetic gamma rays of up to about 10 GeV coming from Eta Carinae in 2009.

“Different models have been proposed to explain how this gamma radiation is produced,” Füßling reports. “It could be generated by accelerated electrons or by high-energy atomic nuclei.” Determining which of these two scenarios is correct is crucial: very energetic atomic nuclei account for the bulk of the so-called Cosmic Rays, a subatomic cosmic hailstorm striking Earth constantly from all directions. Despite intense research for more than 100 years, the sources of the Cosmic Rays are still not exhaustively known. Since the electrically charged atomic nuclei are deflected by cosmic magnetic fields as they travel through the universe, the direction from which they arrive at Earth no longer points back to their origin. Cosmic gamma rays, on the other hand, are not deflected. So, if the gamma rays emitted by a specific source can be shown to originate from high-energy atomic nuclei, one of the long-sought accelerators of cosmic particle radiation will have been identified.

“In the case of Eta Carinae, electrons have a particularly hard time getting accelerated to high energyies, because they are constantly being deflected by magnetic fields during their acceleration, which makes them lose energy again,” says Leser. “Very high-energy gamma radiation begins above the 100 GeV range, which is rather difficult to explain in Eta Carinae to stem from electron acceleration.” The satellite data already indicated that Eta Carinae also emits gamma radiation beyond 100 GeV, and H.E.S.S. has now succeeded in detecting such radiation up to energies of 400 GeV around the time of the close encounter of the two blue giants in 2014 and 2015. This makes the binary star the first known example of a source in which very high-energy gamma radiation is generated by colliding stellar winds.

“The analysis of the gamma radiation measurements taken by H.E.S.S. and the satellites shows that the radiation can best be interpreted as the product of rapidly accelerated atomic nuclei,” says DESY’s PhD student Ruslan Konno, who has published a companion study, together with scientists from the Max Planck Institute for Nuclear Physics in Heidelberg. “This would make the shock regions of colliding stellar winds a new type of natural particle accelerator for cosmic rays.” With H.E.S.S., which is named after the discoverer of Cosmic Rays, Victor Franz Hess, and the upcoming Cherenkov Telescope Array (CTA), the next-generation gamma-ray observatory currently being built in the Chilean highlands, the scientists hope to investigate this phenomenon in greater detail and discover more sources of this kind.

“I find science and scientific research extremely important,” says Nicolai, who sees close parallels in the creative work of artists and scientists. For him, the appeal of this work also lay in the artistic mediation of scientific research results: “particularly the fact that it is not a film soundtrack, but has a genuine reference to reality,” emphasizes the musician and artist. Together with the exclusively composed sound, this unique collaboration of scientists, animation artists and musician has resulted in a multimedia work that takes viewers on an extraordinary journey to a superlative double star some 7500 light years away.

Go to Source
Author:

Categories
ScienceDaily

Researchers shed light on new enzymatic reaction

Researchers have identified key ingredients for producing high-value chemical compounds in an environmentally friendly fashion: repurposed enzymes, curiosity, and a little bit of light.

A paper published in Nature describes a study led by Xiaoqiang Huang (pictured), a postdoctoral researcher in the University of Illinois at Urbana-Champaign’s Department of Chemical and Biomolecular Engineering (ChBE) and the Carl R. Woese Institute for Genomic Biology (IGB). Huang works in the lab of ChBE Professor Huimin Zhao, Conversion Theme Leader at the Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), a U.S. Department of Energy-funded Bioenergy Research Center (BRC).

Catalysts are substances used to speed up chemical reactions; in living organisms, protein molecules called enzymes catalyze reactions in a process called biocatalysis.

Biocatalysis is rapidly emerging as a nuanced, agile way to synthesize valuable compounds. Scientists are investigating the ability of enzymes to catalyze diverse reactions, and for good reason: biocatalytic reactions are highly selective, meaning that scientists can use enzymes to act on specific substrates and create target products.

Enzymatic reactions are also highly sustainable as they are relatively inexpensive, consume low levels of energy, and do minimal damage to the environment: while chemical catalysts typically require organic solvents, heat, and high pressure to function, biocatalysts work in aqueous solutions, operating at room-temperature and normal-pressure conditions.

Despite their value to science and sustainability, enzymes can be complicated to work with. Reactions enzymes can catalyze are limited to those found in nature; this means that scientists often struggle to track down the perfect biocatalyst to meet their need.

The process is similar to mixing paint: How can an artist creatively combine the colors already on a palette to produce the right shade? In the language of a chemical reaction: How can scientists leverage enzymes already existing in nature to create the products they need?

The research team developed a solution: a visible-light-induced reaction that uses the enzyme family ene-reductase (ER) as a biocatalyst and can produce high yields of valuable chiral carbonyl compounds.

“Our solution might be considered ‘repurposing.’ We take known enzymes that occur in nature, and repurpose them for a novel reaction,” Zhao said.

In other words, the researchers didn’t need to add a new kind of paint to the palette — they discovered an artful way to combine what was already there.

These “repurposed” enzymatic reactions are not only economically and environmentally efficient, but highly desirable: chiral carbonyl compounds have potential applications in the pharmaceutical industry to be used for drug production.

The team’s solution is particularly unique in that it merges biocatalysis with photocatalysis — wherein light is used as a renewable source of activation energy — in a novel, photoenzymatic reaction.

Over the course of the study, researchers tested a variety of substrates (i.e., the substance on which the catalyst acts), documenting the ER enzymes’ reactivity in response to each. This process is comparable to baking a chemical chocolate-chip cookie: by keeping light levels constant and tweaking the “ingredients” (i.e. ERs and substrates), the team was able to gradually circle in on a desired reaction.

Using chemical insights and clever design to synthesize value-added products is characteristic of CABBI’s Conversion theme.

“Creating novel enzyme function is one of CABBI’s major scientific challenges,” Zhao said. “This study addresses that challenge by uncovering novel uses for enzymes and showing what they’re capable of.”

The substrates used in this study (hydrocarbon compounds known as alkenes) also align with CABBI’s mission to investigate applications of plant biomass. In principle, fatty acids from crops like miscanthus, sorghum, and sugarcane can be converted into alkenes, which can then be used in place of petroleum-based substrates to produce valuable compounds.

By blending bio- and photocatalysis and experimenting with various reactionary “ingredients,” this study expanded the ER enzyme’s repertoire to synthesize high-value, high-quantity compounds.

But merging light with enzymes is just the beginning.

“We are by no means limited to creating chiral carbonyl compounds,” Huang said. “Hopefully, this research will inspire scientists to combine several types of enzymes and explore new options for reactivity.”

In the future, researchers can build on this study to create an even more diverse portfolio of products — and further expand upon the economic and environmental benefits of enzymes.

Go to Source
Author:

Categories
ProgrammableWeb

Hello Soda Launches API Platform for Integration With Identity Verification Services

Hello Soda identified that many stakeholders were having difficulty implementing multiple identity verification solutions independently. Its developers have responded to this challenge and the lack of cross-solution data analysis to help perform enhanced checks with the launch of Sodium.

Sodium is a single API platform that enables seamless integration with all of Hello Soda’s automated and global KYC and AML solutions.

Sodium has been designed and built by a multi-lingual team of ID and data science specialists across the globe. This new platform will further enhance the difference Hello Soda brings to global and local businesses and economies where traditional verification methods cannot be achieved.

This game-changing platform now enables organizations to not only add multiple ID&V products seamlessly but it cross-references data to perform additional checks leading to a truly enhanced customer due diligence (EDD). From document ID data cross-referenced with the dark web to an individual’s social footprint compared to CRA data, Sodium certainly delivers a multi-pronged approach to identity verification.

Hello Soda’s identity verification solutions are truly global with their products being used across a wide range of sectors in 177 countries. Sodium will enable Hello Soda to extend its reach and the continued growth globally of this innovative business.

James Blake, CEO of Hello Soda said: “We’re extremely proud of what we’ve developed with this new single API platform. Sodium will enable us to continue our global growth, and speed up the thousands of checks we carry out every day to keep customers and companies going.

“We work with businesses all over the world, and are currently growing our client base in Latin America and Asia, and are making ID verification more accessible in Africa. That’s thanks to our suite of solutions and new API platform that makes it possible to verify anyone, anywhere in the world. It’s fantastic to see us improving digital security in so many countries throughout the world.”

Hello Soda works across a wide range of regulated and non-regulated sectors where user and customer identity checks are needed. Some of their global clients include Blockchain, eToro, Klarna, Paysafe, and Sun Finance.

Go to Source
Author: <a href="https://www.programmableweb.com/user/%5Buid%5D">ProgrammableWeb PR</a>

Categories
ScienceDaily

Artificial intelligence identifies optimal material formula

Nanostructured layers boast countless potential properties — but how can the most suitable one be identified without any long-term experiments? A team has ventured a shortcut: using a machine learning algorithm, the researchers were able to reliably predict the properties of such a layer.

Porous or dense, columns or fibres

During the manufacture of thin films, numerous control variables determine the condition of the surface and, consequently, its properties. Relevant factors include the composition of the layer as well as process conditions during its formation, such as temperature. All these elements put together result in the creation of either a porous or a dense layer during the coating process, with atoms combining to form columns or fibres. “In order to find the optimal parameters for an application, it used to be necessary to conduct countless experiments under different conditions and with different compositions; this is an incredibly complex process,” explains Professor Alfred Ludwig, Head of the Materials Discovery and Interfaces Team.

Findings yielded by such experiments are so-called structure zone diagrams, from which the surface of a certain composition resulting from certain process parameters can be read. “Experienced researchers can subsequently use such a diagram to identify the most suitable location for an application and derive the parameters necessary for producing the suitable layer,” points out Ludwig. “The entire process requires an enormous effort and is highly time consuming.”

Algorithm predicts surface

Striving to find a shortcut towards the optimal material, the team took advantage of artificial intelligence, more precisely machine learning. To this end, PhD researcher Lars Banko, together with colleagues from the Interdisciplinary Centre for Advanced Materials Simulation at RUB, Icams for short, modified a so-called generative model. He then trained this algorithm to generate images of the surface of a thoroughly researched model layer of aluminium, chromium and nitrogen using specific process parameters, in order to predict what the layer would look like under the respective conditions.

“We fed the algorithm with a sufficient amount of experimental data in order to train it, but not with all known data,” stresses Lars Banko. Thus, the researchers were able to compare the results of the calculations with those of the experiments and analyse how reliable its prediction was. The results were conclusive: “We combined five parameters and were able to look in five directions simultaneously using the algorithm — without having to conduct any experiments at all,” outlines Alfred Ludwig. “We have thus shown that machine learning methods can be transferred to materials research and can help to develop new materials for specific purposes.”

Story Source:

Materials provided by Ruhr-University Bochum. Note: Content may be edited for style and length.

Go to Source
Author:

Categories
ScienceDaily

Scientists shed light on mystery of dark matter

Scientists have identified a sub-atomic particle that could have formed the “dark matter” in the Universe during the Big Bang.

Up to 80% of the Universe could be dark matter, but despite many decades of study, its physical origin has remained an enigma. While it cannot be seen directly, scientists know it exists because of its interaction via gravity with visible matter like stars and planets. Dark matter is composed of particles that do not absorb, reflect or emit light.

Now, nuclear physicists at the University of York are putting forward a new candidate for the mysterious matter — a particle they recently discovered called the d-star hexaquark.

The particle is composed of six quarks — the fundamental particles that usually combine in trios to make up protons and neutrons. Importantly, the six quarks in a d-star result in a boson particle, which means that when many d-stars are present they can combine together in very different ways to the protons and neutrons.

The research group at York suggest that in the conditions shortly after the Big Bang, many d-star hexaquarks could have grouped together as the universe cooled and expanded to form the fifth state of matter — Bose-Einstein condensate.

Dr MIkhail Bashkanov and Professor Daniel Watts from the the department of physics at the University of York recently published the first assessment of the viability of this new dark matter candididate.

Professor Daniel Watts from the department of physics at the University of York said: “The origin of dark matter in the universe is one of the biggest questions in science and one that, until now, has drawn a blank. Our first calculations indicate that condensates of d-stars are a feasible new candidate for dark matter. This new result is particularly exciting since it doesn’t require any concepts that are new to physics.”

Co-author of the paper, Dr Mikhail Bashkanov from the Department of Physics at the University of York said: “The next step to establish this new dark matter candidate will be to obtain a better understanding of how the d-stars interact — when do they attract and when do they repel each other.

“We are leading new measurements to create d-stars inside an atomic nucleus and see if their properties are different to when they are in free space. “

Story Source:

Materials provided by University of York. Note: Content may be edited for style and length.

Go to Source
Author:

Categories
ScienceDaily

Best method to teach children augmented reality

Researchers at The University of Texas at San Antonio (UTSA) identified the best approach to help children operate Augmented Reality (AR). According to UTSA computer science experts, a major barrier into wider adoption of the technology for experiential learning is based on AR designs geared toward adults that rely on voice or gesture commands. By conducting in-classroom testing among elementary school students, UTSA researchers uncovered that AR programs are best delivered using controller commands, followed by programs that communicate with age-specific language.

“The majority of AR programs urge users to speak commands such as ‘select’ but a child doesn’t necessarily communicate in this manner. We have to create AR experiences that are designed with a child in mind. It’s about making experiential learning grow and adapt with the intended user,” said John Quarles, co-author and associate professor in the UTSA Department of Computer Science. “Currently, many voice commands are built to recognize adult voices but not children.”

Quarles, along with Brita Munsinger, co-lead on the project, designed the research study to replace more complex word instructions with easier commands that would be best understood by the younger subjects. This allowed the children to reduce time and error in completing a series of tasks.

“One of my favorite parts of working in human-computer interaction is the impact your work can have. Any time someone uses technology, there’s an opportunity to improve how they interact with it,” said Munsinger. “With this project, we hope to eventually make augmented reality a useful tool for teaching STEM subjects to kids.”

The UTSA study was conducted in classrooms with children ages 9 -11 who wore Microsoft HoloLens and were then asked to complete a series of tasks. In the analysis, students by far exhibited less error, fatigue and higher usability when interaction with AR was based on completing tasks that relied on hardware controllers. Voice and gesture selection both took longer than controller selection. Children fatigue levels also were highest when participants had to make gesture commands. Moreover, this modality was the least usable interaction, while controller was rated highest on usability.

According to a 2019 Deloitte report on the state of AR, investments into this segment of digital reality will be led by the U.S. and estimated over $3.5 billion. The University of Texas at San Antonio is dedicated to the advancement of knowledge through research and discovery, teaching and learning, community engagement and public service. Currently Quarles serves as director of San Antonio Virtual Environments Lab (SAVE). His areas of focus include Human-Computer Interaction Virtual, Augmented, and Mixed Realities. He has developed virtual reality programs for children with learning disabilities.

“We hope that with this study will serve as a launching point to improve the future immersive learning tools in our classrooms,” said Quarles.

Story Source:

Materials provided by University of Texas at San Antonio. Note: Content may be edited for style and length.

Go to Source
Author:

Categories
ProgrammableWeb

SoundCloud API Issues Exposed by Security Researchers

Security researchers have identified various vulnerabilities within the SoundCloud APITrack this API that could have allowed attackers to gain access to user accounts and easily initiate DDoS attacks. Checkmarx Research conducted the investigation into the online social music platform as part of a broader examination of “the state of API Security in leading online platforms.”

SoundCloud is a music streaming platform that has seen immense growth over the last several years, culminating in SiriusXM recently investing $75M in the company. With such success comes increased scrutiny and Checkmarx’s researchers were able to discover myriad issues within SoundCloud’s APIs.

The first issue that Checkmarx noted in their findings was broken authentication methods that could have allowed bad actors to access accounts through brute-force attacks. Although the /sign-in/password endpoint did implement rate limiting, the researchers found that with several combinations of use_agent, device_id, and signature they were able to bypass these measures. With a technique called credential stuffing (this is when attackers use previously leaked credentials to try to gain access to accounts by “stuffing” them into fields), the researchers found that they could have obtained valid access tokens. A great reminder to change your passwords.

Additionally, the research highlighted that the /tracks endpoint did not implement proper resources limiting and that attackers could deplete resources in the application layer through a DDoS attack. This is possible because as the research stated:

“using a specially crafted list of track IDs to maximize the response size, and issuing requests from several sources at the same time to deplete resources in the application layer will make the target’s system services unavailable.”

SoundCloud appears to have issued fixes for these vulnerabilities as a result of Checkmarx’s research. Make sure to check out the full report for more detail on additional issues. 

Go to Source
Author: <a href="https://www.programmableweb.com/user/%5Buid%5D">KevinSundstrom</a>

Categories
ScienceDaily

Smart algorithm finds possible future treatment for childhood cancer

Using a computer algorithm, scientists at Uppsala University have identified a promising new treatment for neuroblastoma. This form of cancer in children, which occurs in specialised nerve cells in the sympathetic nervous system, may be life-threatening. In the long term the discovery, described in the latest issue of the scientific journal Nature Communications, may result in a new form of treatment for children in whom the disease is severe or at an advanced stage.

The new treatment is based on activating a receptor protein, CNR2 (cannabinoid receptor 2), in the nervous system. A highly unusual method enabled this particular protein to be applied therapeutically. Instead of using traditional methods of drug development, this research group has developed a new computer algorithm capable of combining massive quantities of genetic and pharmacological data (‘big data’) from European and American hospitals and universities. The algorithm then suggested new treatments that could influence the basic mechanisms of the disease.

“We were astonished when the algorithm came up with completely new ideas for treatment, such as CNR2, that no one has ever discussed in this context. So we decided to investigate this further in the lab,” says Sven Nelander, senior lecturer at Uppsala University’s Department of Immunology, Genetics and Pathology, who is in charge of the study.

The new treatments were investigated using cell samples from patients and in animal models, where they proved efficacious. The cancer cells’ survival rate declined, for example, and tumour growth in zebrafish (Danio rerio) decreased, following treatment with a substance that stimulates CNR2.

The researchers have also developed the computer algorithm to enable it to be applied to other forms of cancer.

“Smart algorithms will be increasingly important in cancer research in the years ahead, since they can help us scientists to find unexpected angles. We’ve already started a major project here in Uppsala, in which several types of cancer in children and adults will be investigated this way. Our hope is that this can result in more unexpected treatment options,” Nelander says.

The study was carried out in collaboration with researchers at Karolinska Institute, Lund University and Chalmers University of Technology.

Story Source:

Materials provided by Uppsala University. Note: Content may be edited for style and length.

Go to Source
Author:

Categories
ScienceDaily

Step toward ‘ink’ development for 3-D printing a bioprosthetic ovary

For the first time, scientists identified and mapped the location of structural proteins in a pig ovary. Ongoing development of an “ink” with these proteins will be used for 3-D printing an artificial (or bio-prosthetic) ovary that could be implanted and allow a woman to have a child. Findings were recently published in Scientific Reports.

“This is a huge step forward for girls who undergo fertility-damaging cancer treatments,” says senior author Monica Laronda, PhD, Director of Basic and Translational Research, Fertility & Hormone Preservation & Restoration Program at Ann & Robert H. Lurie Children’s Hospital of Chicago, and Assistant Professor of Pediatrics at Northwestern University Feinberg School of Medicine. “Our goal is to use the ovarian structural proteins to engineer a biological scaffold capable of supporting a bank of potential eggs and hormone producing cells. Once implanted, the artificial ovary would respond to natural cues for ovulation, enabling pregnancy.”

In November 2019, Dr. Laronda, with three other collaborators, received a patent for creation of an artificial ovary. So far, she and colleagues have 3-D printed an artificial ovary that they implanted into a sterile mouse. The mouse was then able to become pregnant and had live pups. These groundbreaking results were published in 2017 in Nature Communications.

“The structural proteins from a pig ovary are the same type of proteins found in humans, giving us an abundant source for a more complex bio-ink for 3-D printing an ovary for human use,” says Dr. Laronda. “We are one step closer to restoring fertility and hormone production in young women who survive childhood cancer but enter early menopause as a late effect. There are still several steps to go and we are excited to test our new inks.”

The methodology Dr. Laronda and colleagues used to identify and map structural proteins in an ovary can be used by scientists to investigate other organs of interest.

“We have developed a pipeline for identifying and mapping scaffold proteins at the organ level,” says Dr. Laronda. “It is the first time that this has been accomplished and we hope it will spur further research into the microenvironment of other organs.”

Story Source:

Materials provided by Ann & Robert H. Lurie Children’s Hospital of Chicago. Note: Content may be edited for style and length.

Go to Source
Author: