Aquatic robots can remove contaminant particles from water

Corals in the Ocean are made up of coral polyps, a small soft creature with a stem and tentacles, they are responsible for nourishing the corals, and aid the coral’s survival by generating self-made currents through motion of their soft bodies.

Scientists from WMG at the University of Warwick, led by Eindhoven University of Technology in the Netherlands, developed a 1cm by 1cm wireless artificial aquatic polyp, which can remove contaminants from water. Apart from cleaning, this soft robot could be also used in medical diagnostic devices by aiding in picking up and transporting specific cells for analysis.

In the paper, ‘An artificial aquatic polyp that wirelessly attracts, grasps, and releases objects’ researchers demonstrate how their artificial aquatic polyp moves under the influence of a magnetic field, while the tentacles are triggered by light. A rotating magnetic field under the device drives a rotating motion of the artificial polyp’s stem. This motion results in the generation of an attractive flow which can guide suspended targets, such as oil droplets, towards the artificial polyp.

Once the targets are within reach, UV light can be used to activate the polyp’s tentacles, composed of photo-active liquid crystal polymers, which then bend towards the light enclosing the passing target in the polyp’s grasp. Target release is then possible through illumination with blue light.

Dr Harkamaljot Kandail, from WMG, University of Warwick was responsible for creating state of the art 3D simulations of the artificial aquatic polyps. The simulations are important to help understand and elucidate the stem and tentacles generate the flow fields that can attract the particles in the water.

The simulations were then used to optimise the shape of the tentacles so that the floating particles could be grabbed quickly and efficiently.

Dr Harkamaljot Kandail, from WMG, University of Warwick comments:

“Corals are such a valuable ecosystem in our oceans, I hope that the artificial aquatic polyps can be further developed to collect contaminant particles in real applications. The next stage for us to overcome before being able to do this is to successfully scale up the technology from laboratory to pilot scale. To do so we need to design an array of polyps which work harmoniously together where one polyp can capture the particle and pass it along for removal.”

Marina Pilz Da Cunha, from the Eindhoven University of Technology, Netherlands adds:

“The artificial aquatic polyp serves as a proof of concept to demonstrate the potential of actuator assemblies and serves as an inspiration for future devices. It exemplifies how motion of different stimuli-responsive polymers can be harnessed to perform wirelessly controlled tasks in an aquatic environment.”

Story Source:

Materials provided by University of Warwick. Note: Content may be edited for style and length.

Go to Source


Achievement isn’t why more men are majoring in physics, engineering and computer science

While some STEM majors have a one-to-one male-to-female ratio, physics, engineering and computer science (PECS) majors consistently have some of the largest gender imbalances among U.S. college majors — with about four men to every woman in the major. In a new study published today in the peer-reviewed research journal, Science, NYU researchers find that this disparity is not caused by higher math or science achievement among men. On the contrary, the scholars found that men with very low high-school GPAs in math and science and very low SAT math scores were choosing these math-intensive majors just as often as women with much higher math and science achievement.

“Physics, engineering and computer science fields are differentially attracting and retaining lower-achieving males, resulting in women being underrepresented in these majors but having higher demonstrated STEM competence and academic achievement,” said Joseph R. Cimpian, lead researcher and associate professor of economics and education policy at NYU Steinhardt.

Cimpian and his colleagues analyzed data from almost 6,000 U.S. high school students over seven years — from the start of high school into the students’ junior year of college. When the researchers ranked students by their high-school math and science achievement, they noticed that male students in the 1st percentile were majoring in PECS at the same rate as females in the 80th percentile, demonstrating a stark contrast between the high academic achievement of the female students majoring in PECS compared to their male peers.

The researchers also reviewed the data for students who did not intend to major in PECS fields, but later decided to. They found that the lowest achieving male student was as least as likely to join one of these majors as the highest achieving female student.

The rich dataset the researchers used was collected by the U.S. Department of Education, and it contained measures of many factors previously linked to the gender gap in STEM. The NYU team tested whether an extensive set of factors could explain the gender gap equally well among high, average, and low achieving students. While the gender gap in PECS among the highest achievers could be explained by other factors in the data, such as a student’s prior career aspirations and confidence in their science abilities, these same factors could not explain the higher rates of low-achieving men in these fields.

This new work suggests that interventions to improve gender equity need to become more nuanced with respect to student achievement.

“Our results suggest that boosting STEM confidence and earlier career aspirations might raise the numbers of high-achieving women in PECS, but the same kinds of interventions are less likely to work for average and lower achieving girls, and that something beyond all these student factors is drawing low-achieving men to these fields,” said Cimpian.

“This new evidence, combined with emerging literature on male-favoring cultures that deter women in PECS, suggests that efforts to dismantle barriers to women in these fields would raise overall quality of students,” continued Cimpian.

Story Source:

Materials provided by New York University. Note: Content may be edited for style and length.

Go to Source

3D Printing Industry

Texas A&M researchers use 3D printed biomaterials to create facial bone grafts

Researchers from Texas A&M University have combined 3D printing, biomaterial engineering and stem cell biology to create new, more efficient, customizable bone grafting materials. Leveraging these three technologies, the scientists produced 3D printed highly-osteogenic scaffolds that not only facilitate bone cell growth but also serve as a sturdy platform for bone regeneration in custom shapes. […]

Go to Source
Author: Paul Hanaphy


3D atlas of bone marrow — in single cell resolution

Stem cells located in the bone marrow generate and control the production of blood and immune cells. Researchers from EMBL, DKFZ and HI-STEM have now developed new methods to reveal the three-dimensional organization of the bone marrow at the single cell level. Using this approach the teams have identified previously unknown cell types that create specific local environments required for blood generation from stem cells. The study, published in Nature Cell Biology, reveals an unexpected complexity of the bone marrow and its microdomains at an unprecedented resolution and provides a novel scientific basis to study blood diseases such as leukemias.

In the published study researchers from European Molecular Biology Laboratory (EMBL), the German Cancer Research Center (DKFZ) and the Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH) present new methods permitting the characterisation of complex organs. The team focused their research on the murine bone marrow, as it harbours blood stem cells that are responsible for life-long blood production. Because of the ability to influence stem cells and to sustain blood production, there is a growing interest in exploiting the bone marrow environment, also called niche, as a target for novel leukemia treatments. “So far, very little was known about how different cells are organised within the bone marrow and how they interact to maintain blood stem cells,” explains Chiara Baccin, post-doc in the Steinmetz Group at EMBL. “Our approach unveils the cellular composition, the three-dimensional organisation and the intercellular communication in the bone marrow, a tissue that has thus far been difficult to study using conventional methods,” further explains Jude Al-Sabah, PhD student in the Haas Group at HI-STEM and DKFZ.

In order to understand which cells can be found in the bone marrow, where they are localised and how they might impact on stem cells, the researchers combined single-cell and spatial transcriptomics with novel computational methods. By analysing the RNA content of individual bone marrow cells, the team identified 32 different cell types, including extremely rare and previously unknown cell types. “We believe that these rare ‘niche cells’ establish unique environments in the bone marrow that are required for stem cell function and production of new blood and immune cells,” explains Simon Haas, group leader at the DKFZ and HI-STEM, and one of the initiators of the study.

Using novel computational methods, the researchers were not only able to determine the organisation of the different cell types in the bone marrow in 3D, but could also predict their cellular interactions and communication. “It’s the first evidence that spatial interactions in a tissue can be deduced computationally on the basis of genomic data,” explains Lars Velten, staff scientist in the Steinmetz Group.

“Our dataset is publicly accessible to any laboratory in the world and it could be instrumental in refining in vivo studies,” says Lars Steinmetz, group leader and director of the Life Science Alliance at EMBL Heidelberg. The data, which is now already used by different teams all over the world, is accessible via a user-friendly web app.

The developed methods can in principle be used to analyse the 3D organisation of any organ at the single cell level. “Our approach is widely applicable and could also be used to study the complex pathology of human diseases such as anemia or leukemia” highlights Andreas Trumpp, managing director of HI-STEM and division head at DKFZ.

Go to Source

3D Printing Industry

Brazilian scientists 3D bioprint functional mini-livers

Scientists from the Human Genome and Stem Cell Research Center (HUG-CELL) University of São Paulo (USP), have utilized 3D bioprinting to develop functional hepatic organoids, otherwise known as mini-livers.  Made from human blood cells, the mini-livers replicate normal functions such as producing vital proteins, storing vitamins, and secreting bile. Though still leagues away from a […]

Go to Source
Author: Tia Vialva


Complex organ models grown in the lab

In 2006, Japanese researchers came up with a new way of creating pluripotent stem cells through epigenetic reprogramming of connective tissue cells. Their discovery has yielded a highly valuable cell type which scientists can use to grow all cells of the human body in a Petri dish.

When culturing these so-called “induced pluripotent stem cells” (iPS cells) as three-dimensional cell aggregates, functional miniature versions of human organs, the so-called organoids, can be created by selectively adding growth factors. In the past years, this technique has been used to create cell culture models of the intestines, the lung, liver, kidneys and the brain, for example.

Previous organoids remained incomplete

Such organoid models are often surprisingly similar to real embryonic tissues. However, most remained incomplete because they lacked stromal cells and structures, the supportive framework of an organ composed of connective tissue. For instance, the tissues lacked blood vessels and immune cells. During embryonic development, all these cell types and structures are engaged in a process of constant exchange, they influence each other and thereby boost the development and maturation of the tissue and of the organ. Diseases, too, usually evolve in the tissue context with the involvement of different cell types. The selective incorporation of stromal components, and especially of functioning blood vessels, would therefore promote the maturation of already established organoid models.

Scientists from the University of Würzburg have now taken a major step towards developing such complex organoids. The anatomists, Dr. Philipp Wörsdörfer and Professor Süleyman Ergün, the head of the Institute of Anatomy and Cell Biology, were in charge of the project. In an article published in the journal “Scientific Reports” in early November 2019, the two researchers present the results of their work.

Mesodermal stem cells make miniature organs complete

“We used a trick to achieve our goal,” explains Philipp Wörsdörfer. “First we created so-called mesodermal progenitor cells from pluripotent stem cells.” Under the right conditions, such progenitor cells are capable of producing blood vessels, immune cells and connective tissue cells.

To demonstrate the potential of the mesodermal progenitor cells, the scientists then mixed these cells with tumour cells as well as with brain stem cells that had previously been generated from human iPS cells. This mixture grew to form complex three-dimensional tumour or brain organoids in the Petri dish featuring functional blood vessels, connective tissue, and in the case of the brain tissue, also brain-specific immune cells, the so-called microglia cells.

“In the future, the miniature organ models generated with this new technique can help scientists shed light on the processes involved in the genesis of diseases and analyse the effect of therapeutic substances in more detail before using them on animals and human patients,” says Süleyman Ergün. This would allow the number of animal experiments to be reduced. Moreover, the organ models could contribute to gaining a better understanding of embryonic development processes and grow tissue that can be transplanted efficiently since they already have a functional vascular system.

Story Source:

Materials provided by University of Würzburg. Note: Content may be edited for style and length.

Go to Source


Human heart cells are altered by spaceflight, but return to (mostly) normal on Earth

Heart muscle cells derived from stem cells show remarkable adaptability to their environment during and after spaceflight, according to a study publishing November 7 in the journal Stem Cell Reports. The researchers examined cell-level cardiac function and gene expression in human heart cells cultured aboard the International Space Station for 5.5 weeks. Exposure to microgravity altered the expression of thousands of genes, but largely normal patterns of gene expression reappeared within 10 days after returning to Earth.

“Our study is novel because it is the first to use human induced pluripotent stem cells to study the effects of spaceflight on human heart function,” says senior study author Joseph C. Wu of Stanford University School of Medicine. “Microgravity is an environment that is not very well understood, in terms of its overall effect on the human body, and studies like this could help shed light on how the cells of the body behave in space, especially as the world embarks on more and longer space missions such as going to the moon and Mars.”

Past studies have shown that spaceflight induces physiological changes in cardiac function, including reduced heart rate, lowered arterial pressure, and increased cardiac output. But to date, most cardiovascular microgravity physiology studies have been conducted either in non-human models or at tissue, organ, or systemic levels. Relatively little is known about the role of microgravity in influencing human cardiac function at the cellular level.

To address this question, Wu and his collaborators (including graduate student Alexa Wnorowski, former Stanford graduate student Arun Sharma, now a research fellow at Cedars-Sinai in Los Angeles, and former Stanford graduate student turned astronaut Kathleen Rubins) studied human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). They generated hiPSC lines from three individuals by reprogramming blood cells, and then differentiated them into hiPSC-CMs.

Beating hiPSC-CMs were then launched to the International Space Station aboard a SpaceX spacecraft as part of a commercial resupply service mission. Simultaneously, ground control hiPSC-CMs were cultured on Earth for comparison purposes.

Upon return to Earth, space-flown hiPSC-CMs showed normal structure and morphology. However, they did adapt by modifying their beating pattern and calcium recycling patterns.

In addition, the researchers performed RNA sequencing of hiPSC-CMs harvested at 4.5 weeks aboard the International Space Station, and 10 days after returning to Earth. These results showed that 2,635 genes were differentially expressed among flight, post-flight, and ground control samples. Most notably, gene pathways related to mitochondrial function were expressed more in space-flown hiPSC-CMs. A comparison of the samples revealed that hiPSC-CMs adopt a unique gene expression pattern during spaceflight, which reverts to one that is similar to groundside controls upon return to normal gravity.

“We’re surprised about how quickly human heart muscle cells are able to adapt to the environment in which they are placed, including microgravity,” Wu says. “These studies may provide insight into cellular mechanisms that could benefit astronaut health during long-duration spaceflight, or potentially lay the foundation for new insights into improving heart health on Earth.”

According to Wu, limitations of the study include its short duration and the use of 2D cell culture. In future studies, the researchers plan to examine the effects of spaceflight and microgravity using more physiologically relevant hiPSC-derived 3D heart tissues with various cell types, including blood vessel cells. “We also plan to test different treatments on the human heart cells to determine if we can prevent some of the changes the heart cells undergo during spaceflight,” Wu says.

This work was supported by the Center for the Advancement of Science in Space (CASIS), a Department of Defense National Defense Science and Engineering Graduate Fellowship (AW), a American Heart Association (AHA) Predoctoral Fellowship, the National Science Foundation Graduate Research Fellowship Program, NIH, a AHA postdoctoral fellowship, a NIH Director’s Pioneer Award, the NHLBI Progenitor Cell Biology Consortium, an AHA Grant-in-Aid, Burroughs Wellcome Foundation Innovation in Regulatory Science, and an AHA Established Investigator Award. BioServe Space Technologies and SpaceX were implementation partners.

Story Source:

Materials provided by Cell Press. Note: Content may be edited for style and length.

Go to Source


Better way to teach physics to university students

Courses in introductory physics are required for nearly all university STEM degree programs not only because physics is considered foundational to those disciplines, but also because it provides students practical experience in applied mathematics. The latter is especially true for calculus-based physics courses, which typically provide students their first exposure to using calculus outside of their math classes.

Now, a team of physicists and educators at the University of Kansas has developed a curriculum for college-level students that shows promise in helping students in introductory physics classes further practice and develop their calculus skills, especially those who test lower in core math abilities. They term the approach “energy-first.”

Their findings appear in the peer-reviewed journal Physical Review Physics Education Research.

“It’s almost always the case that in introductory physics courses students are first taught mechanics in the context of forces. Later in the course, they are shown that they can also apply the concept of energy to solve most of the problems they already learned to solve with forces,” said co-author Christopher Fischer, engineering physics director and associate chair of physics & astronomy at KU. “We decided instead we want to teach energy first — because, number one, we think it’s a more generally applicable way of thinking about physics. Number two, it also allows us to achieve our secondary goal of providing the students with more opportunities to use and practice their calculus skills.”

From fall 2015 to spring of this year, Fischer and his KU colleagues monitored students and performed testing in two introductory physics classes at KU taken mostly by students pursuing degrees in the physical sciences and engineering. For one, they devised an “energy-first” curriculum. For the other, they kept to a more traditional approach that taught students about forces before teaching them about energy.

The presence of two different physics courses using different curricula naturally provided an opportunity for the researchers to compare the outcomes of students in the two courses.

“We sought to compare, as best we could, apples to apples,” Fischer said. “In other words, we compared students who had the same ACT math scores but who took different physics courses to determine what effect our new physics curriculum had on student outcomes.”

The researchers worked with the KU Center for Teaching Excellence and the KU Office of Institutional Research & Planning to obtain the students’ ACT math scores.

Fischer and his colleagues found engineering students taking the new “energy-first” physics curriculum tended to earn higher grades in subsequent engineering classes (for instance, in a mechanical engineering class for which either of the two introductory physics classes was a prerequisite).

“What we saw was the engineering students who were taking our new physics curriculum did better in their engineering classes,” he said.

Furthermore, the biggest benefits to student performance in downstream engineering classes were seen in students who had lower math ACT scores but took the “energy-first” physics class.

“The benefits were even larger the lower your initial math abilities were,” Fischer said. “So, engineering students who had lower ACT math scores had larger benefits from taking this new curriculum, which got us thinking maybe tasking students with solving more problems using calculus in this physics class is helping them with their applied math skills in general, as well as their physics skills.”

Fischer’s KU colleagues on the project from the KU physics & astronomy department were lead author Sarah LeGresley, assistant teaching professor of physics & astronomy; Jennifer Delgado, associate teaching professor; Christopher Bruner, a doctoral student; and Michael Murray, professor of physics & astronomy.

The KU researchers examined how well students had picked up on the physics content by performing more assessments, again finding those in the “energy-first” cohort had the edge over those in the old-style introductory physics class.

“Separately, we did a side-by-side comparison of student performance on a standardized physics conceptual test that many different universities use,” Fischer said. “And we saw that all the students in the new physics curriculum are doing better than the students from the traditional physics curriculum.”

While these results certainly argue for the adoption of an “energy-first” approach, Fischer stressed because of the small sample size and limited demographics of students at only a single, large Midwestern university, the “energy-first” curriculum would need to be tried out on a broader level before concluding it was a superior method for teaching introductory physics to college-age students.

“We didn’t have tens of thousands of students in our study,” Fischer said. “We looked at only a few thousand. Thus, it’s important that other universities try this new curriculum to see if our results can be replicated. Indeed, we would happily welcome other institutions to collaborate with us to test if our results are robust — that’s essential.”

Additionally, the KU researchers hope to develop and implement an assessment to use in physics classes to understand math transference better.

“Is this new way of teaching physics helping students improve their applied calculus skills?” Fischer said. “To our knowledge, no one has built an assessment targeting that specific question. So, we’re trying to figure out how to design such an instrument.”

Finally, Fischer said the team would like to build off the lessons learned from the implementation of the “energy-first” physics approach to modify the curriculum of other classes in the department.

“Is there a way we could design something similar, or at least take advantage of this sort of design methodology for our department’s algebra-based physics classes?” he said. “This naturally also motivates us to reach out to high schools to find collaborators to help us develop new and improved ways of teaching physics in a way that would be more useful for high school students.”

Go to Source

Featured Kennedy Christian

Wednesday 14th August 2019 Kennedy HS

[vc_row][vc_column][vc_column_text]The Guitar Project uses the guitar to teach fundamental science and math principles and product lifecycle management concepts. Faculty members work together to write a curriculum to train high school and college instructors to bring the guitar project back to their classrooms.[/vc_column_text][vc_gallery images=”1516,1514,1510,1511,1520,1519,1515″ img_size=”medium” onclick=”img_link_large” custom_links_target=”_blank”][/vc_column][/vc_row]