Enormous planet quickly orbiting a tiny, dying star

Thanks to a bevy of telescopes in space and on Earth — and even a pair of amateur astronomers in Arizona — a University of Wisconsin-Madison astronomer and his colleagues have discovered a Jupiter-sized planet orbiting at breakneck speed around a distant white dwarf star. The system, about 80 light years away, violates all common conventions about stars and planets. The white dwarf is the remnant of a sun-like star, greatly shrunken down to roughly the size of Earth, yet it retains half the sun’s mass. The massive planet looms over its tiny star, which it circles every 34 hours thanks to an incredibly close orbit. In contrast, Mercury takes a comparatively lethargic 90 days to orbit the sun. While there have been hints of large planets orbiting close to white dwarfs in the past, the new findings are the clearest evidence yet that these bizarre pairings exist. That confirmation highlights the diverse ways stellar systems can evolve and may give a glimpse at our own solar system’s fate. Such a white dwarf system could even provide a rare habitable arrangement for life to arise in the light of a dying star.

“We’ve never seen evidence before of a planet coming in so close to a white dwarf and surviving. It’s a pleasant surprise,” says lead researcher Andrew Vanderburg, who recently joined the UW-Madison astronomy department as an assistant professor. Vanderburg completed the work while an independent NASA Sagan Fellow at the University of Texas at Austin.

The researchers published their findings Sept. 16 in the journal Nature. Vanderburg led a large, international collaboration of astronomers who analyzed the data. The contributing telescopes included NASA’s exoplanet-hunting telescope TESS and two large ground-based telescopes in the Canary Islands.

Vanderburg was originally drawn to studying white dwarfs — the remains of sun-sized stars after they exhaust their nuclear fuel — and their planets by accident. While in graduate school, he was reviewing data from TESS’s predecessor, the Kepler space telescope, and noticed a white dwarf with a cloud of debris around it.

“What we ended up finding was that this was a minor planet or asteroid that was being ripped apart as we watched, which was really cool,” says Vanderburg. The planet had been destroyed by the star’s gravity after its transition to a white dwarf caused the planet’s orbit to fall in toward the star.

Ever since, Vanderburg has wondered if planets, especially large ones, could survive the journey in toward an aging star.

By scanning data for thousands of white dwarf systems collected by TESS, the researchers spotted a star whose brightness dimmed by half about every one-and-a-half days, a sign that something big was passing in front of the star on a tight, lightning-fast orbit. But it was hard to interpret the data because the glare from a nearby star was interfering with TESS’s measurements. To overcome this obstacle, the astronomers supplemented the TESS data from higher-resolution ground-based telescopes, including three run by amateur astronomers.

“Once the glare was under control, in one night, they got much nicer and much cleaner data than we got with a month of observations from space,” says Vanderburg. Because white dwarfs are so much smaller than normal stars, large planets passing in front of them block a lot of the star’s light, making detection by ground-based telescopes much simpler.

The data revealed that a planet roughly the size of Jupiter, perhaps a little larger, was orbiting very close to its star. Vanderburg’s team believes the gas giant started off much farther from the star and moved into its current orbit after the star evolved into a white dwarf.

The question became: how did this planet avoid being torn apart during the upheaval? Previous models of white dwarf-planet interactions didn’t seem to line up for this particular star system.

The researchers ran new simulations that provided a potential answer to the mystery. When the star ran out of fuel, it expanded into a red giant, engulfing any nearby planets and destabilizing the Jupiter-sized planet that orbited farther away. That caused the planet to take on an exaggerated, oval orbit that passed very close to the now-shrunken white dwarf but also flung the planet very far away at the orbit’s apex.

Over eons, the gravitational interaction between the white dwarf and its planet slowly dispersed energy, ultimately guiding the planet into a tight, circular orbit that takes just one-and-a-half days to complete. That process takes time — billions of years. This particular white dwarf is one of the oldest observed by the TESS telescope at almost 6 billion years old, plenty of time to slow down its massive planet partner.

While white dwarfs no longer conduct nuclear fusion, they still release light and heat as they cool down. It’s possible that a planet close enough to such a dying star would find itself in the habitable zone, the region near a star where liquid water can exist, presumed to be required for life to arise and survive.

Now that research has confirmed these systems exist, they offer a tantalizing opportunity for searching for other forms of life. The unique structure of white dwarf-planet systems provides an ideal opportunity to study the chemical signatures of orbiting planets’ atmospheres, a potential way to search for signs of life from afar.

“I think the most exciting part of this work is what it means for both habitability in general — can there be hospitable regions in these dead solar systems — and also our ability to find evidence of that habitability,” says Vanderburg.

Go to Source


New distance measurements bolster challenge to basic model of universe

A new set of precision distance measurements made with an international collection of radio telescopes have greatly increased the likelihood that theorists need to revise the “standard model” that describes the fundamental nature of the Universe.

The new distance measurements allowed astronomers to refine their calculation of the Hubble Constant, the expansion rate of the Universe, a value important for testing the theoretical model describing the composition and evolution of the Universe. The problem is that the new measurements exacerbate a discrepancy between previously measured values of the Hubble Constant and the value predicted by the model when applied to measurements of the cosmic microwave background made by the Planck satellite.

“We find that galaxies are nearer than predicted by the standard model of cosmology, corroborating a problem identified in other types of distance measurements. There has been debate over whether this problem lies in the model itself or in the measurements used to test it. Our work uses a distance measurement technique completely independent of all others, and we reinforce the disparity between measured and predicted values. It is likely that the basic cosmological model involved in the predictions is the problem,” said James Braatz, of the National Radio Astronomy Observatory (NRAO).

Braatz leads the Megamaser Cosmology Project, an international effort to measure the Hubble Constant by finding galaxies with specific properties that lend themselves to yielding precise geometric distances. The project has used the National Science Foundation’s Very Long Baseline Array (VLBA), Karl G. Jansky Very Large Array (VLA), and Robert C. Byrd Green Bank Telescope (GBT), along with the Effelsberg telescope in Germany. The team reported their latest results in the Astrophysical Journal Letters.

Edwin Hubble, after whom the orbiting Hubble Space Telescope is named, first calculated the expansion rate of the universe (the Hubble Constant) in 1929 by measuring the distances to galaxies and their recession speeds. The more distant a galaxy is, the greater its recession speed from Earth. Today, the Hubble Constant remains a fundamental property of observational cosmology and a focus of many modern studies.

Measuring recession speeds of galaxies is relatively straightforward. Determining cosmic distances, however, has been a difficult task for astronomers. For objects in our own Milky Way Galaxy, astronomers can get distances by measuring the apparent shift in the object’s position when viewed from opposite sides of Earth’s orbit around the Sun, an effect called parallax. The first such measurement of a star’s parallax distance came in 1838.

Beyond our own Galaxy, parallaxes are too small to measure, so astronomers have relied on objects called “standard candles,” so named because their intrinsic brightness is presumed to be known. The distance to an object of known brightness can be calculated based on how dim the object appears from Earth. These standard candles include a class of stars called Cepheid variables and a specific type of stellar explosion called a Type Ia supernova.

Another method of estimating the expansion rate involves observing distant quasars whose light is bent by the gravitational effect of a foreground galaxy into multiple images. When the quasar varies in brightness, the change appears in the different images at different times. Measuring this time difference, along with calculations of the geometry of the light-bending, yields an estimate of the expansion rate.

Determinations of the Hubble Constant based on the standard candles and the gravitationally-lensed quasars have produced figures of 73-74 kilometers per second (the speed) per megaparsec (distance in units favored by astronomers).

However, predictions of the Hubble Constant from the standard cosmological model when applied to measurements of the cosmic microwave background (CMB) — the leftover radiation from the Big Bang — produce a value of 67.4, a significant and troubling difference. This difference, which astronomers say is beyond the experimental errors in the observations, has serious implications for the standard model.

The model is called Lambda Cold Dark Matter, or Lambda CDM, where “Lambda” refers to Einstein’s cosmological constant and is a representation of dark energy. The model divides the composition of the Universe mainly between ordinary matter, dark matter, and dark energy, and describes how the Universe has evolved since the Big Bang.

The Megamaser Cosmology Project focuses on galaxies with disks of water-bearing molecular gas orbiting supermassive black holes at the galaxies’ centers. If the orbiting disk is seen nearly edge-on from Earth, bright spots of radio emission, called masers — radio analogs to visible-light lasers — can be used to determine both the physical size of the disk and its angular extent, and therefore, through geometry, its distance. The project’s team uses the worldwide collection of radio telescopes to make the precision measurements required for this technique.

In their latest work, the team refined their distance measurements to four galaxies, at distances ranging from 168 million light-years to 431 million light-years. Combined with previous distance measurements of two other galaxies, their calculations produced a value for the Hubble Constant of 73.9 kilometers per second per megaparsec.

“Testing the standard model of cosmology is a really challenging problem that requires the best-ever measurements of the Hubble Constant. The discrepancy between the predicted and measured values of the Hubble Constant points to one of the most fundamental problems in all of physics, so we would like to have multiple, independent measurements that corroborate the problem and test the model. Our method is geometric, and completely independent of all others, and it reinforces the discrepancy,” said Dom Pesce, a researcher at the Center for Astrophysics | Harvard and Smithsonian, and lead author on the latest paper.

“The maser method of measuring the expansion rate of the universe is elegant, and, unlike the others, based on geometry. By measuring extremely precise positions and dynamics of maser spots in the accretion disk surrounding a distant black hole, we can determine the distance to the host galaxies and then the expansion rate. Our result from this unique technique strengthens the case for a key problem in observational cosmology.” said Mark Reid of the Center for Astrophysics | Harvard and Smithsonian, and a member of the Megamaser Cosmology Project team.

“Our measurement of the Hubble Constant is very close to other recent measurements, and statistically very different from the predictions based on the CMB and the standard cosmological model. All indications are that the standard model needs revision,” said Braatz.

Astronomers have various ways to adjust the model to resolve the discrepancy. Some of these include changing presumptions about the nature of dark energy, moving away from Einstein’s cosmological constant. Others look at fundamental changes in particle physics, such as changing the numbers or types of neutrinos or the possibilities of interactions among them. There are other possibilities, even more exotic, and at the moment scientists have no clear evidence for discriminating among them.

“This is a classic case of the interplay between observation and theory. The Lambda CDM model has worked quite well for years, but now observations clearly are pointing to a problem that needs to be solved, and it appears the problem lies with the model,” Pesce said.

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

Go to Source


Hot stars are plagued by giant magnetic spots, ESO data shows

Astronomers using European Southern Observatory (ESO) telescopes have discovered giant spots on the surface of extremely hot stars hidden in stellar clusters. Not only are these stars plagued by magnetic spots, some also experience superflare events, explosions of energy several million times more energetic than similar eruptions on the Sun. The findings, published today in Nature Astronomy, help astronomers better understand these puzzling stars and open doors to resolving other elusive mysteries of stellar astronomy.

The team, led by Yazan Momany from the INAF Astronomical Observatory of Padua in Italy, looked at a particular type of star known as extreme horizontal branch stars — objects with about half the mass of the Sun but four to five times hotter. “These hot and small stars are special because we know they will bypass one of the final phases in the life of a typical star and will die prematurely,” says Momany, who was previously a staff astronomer at ESO’s Paranal Observatory in Chile. “In our Galaxy, these peculiar hot objects are generally associated with the presence of a close companion star.”

Surprisingly, however, the vast majority of these extreme horizontal branch stars, when observed in tightly packed stellar groups called globular clusters, do not appear to have companions. The team’s long-term monitoring of these stars, made with ESO telescopes, also revealed that there was something more to these mysterious objects. When looking at three different globular clusters, Momany and his colleagues found that many of the extreme horizontal branch stars within them showed regular changes in their brightness over the course of just a few days to several weeks.

“After eliminating all other scenarios, there was only one remaining possibility to explain their observed brightness variations,” concludes Simone Zaggia, a study co-author from the INAF Astronomical Observatory of Padua in Italy and a former ESO Fellow: “these stars must be plagued by spots!”

Spots on extreme horizontal branch stars appear to be quite different from the dark sunspots on our own Sun, but both are caused by magnetic fields. The spots on these hot, extreme stars are brighter and hotter than the surrounding stellar surface, unlike on the Sun where we see spots as dark stains on the solar surface that are cooler than their surroundings. The spots on extreme horizontal branch stars are also significantly larger than sunspots, covering up to a quarter of the star’s surface. These spots are incredibly persistent, lasting for decades, while individual sunspots are temporary, lasting only a few days to months. As the hot stars rotate, the spots on the surface come and go, causing the visible changes in brightness.

Beyond the variations in brightness due to spots, the team also discovered a couple of extreme horizontal branch stars that showed superflares — sudden explosions of energy and another signpost of the presence of a magnetic field. “They are similar to the flares we see on our own Sun, but ten million times more energetic,” says study co-author Henri Boffin, an astronomer at ESO’s headquarters in Germany. “Such behaviour was certainly not expected and highlights the importance of magnetic fields in explaining the properties of these stars.”

After six decades of trying to understand extreme horizontal branch stars, astronomers now have a more complete picture of them. Moreover, this finding could help explain the origin of strong magnetic fields in many white dwarfs, objects that represent the final stage in the life of Sun-like stars and show similarities to extreme horizontal branch stars. “The bigger picture though,” says team member, David Jones, a former ESO Fellow now at the Instituto de Astrofísica de Canarias, Spain, “is that changes in brightness of all hot stars — from young Sun-like stars to old extreme horizontal branch stars and long-dead white dwarfs — could all be connected. These objects can thus be understood as collectively suffering from magnetic spots on their surfaces.”

m, allowing them to reveal the hotter, extreme stars standing out bright amongst the cooler stars in globular clusters.

Story Source:

Materials provided by ESO. Note: Content may be edited for style and length.

Go to Source


Astronomers could spot life signs orbiting long-dead stars

The next generation of powerful Earth- and space-based telescopes will be able to hunt distant solar systems for evidence of life on Earth-like exoplanets — particularly those that chaperone burned-out stars known as white dwarfs.

The chemical properties of those far-off worlds could indicate that life exists there. To help future scientists make sense of what their telescopes are showing them, Cornell University astronomers have developed a spectral field guide for these rocky worlds.

“We show what the spectral fingerprints could be and what forthcoming space-based and large terrestrial telescopes can look out for,” said Thea Kozakis, doctoral candidate in astronomy, who conducts her research at Cornell’s Carl Sagan Institute. Kozakis is lead author of “High-resolution Spectra and Biosignatures of Earth-like Planets Transiting White Dwarfs,” published in Astrophysical Journal Letters.

In just a few years, astronomers — using tools such as the Extremely Large Telescope, currently under construction in northern Chile’s Atacama Desert, and the James Webb Space Telescope, scheduled to launch in 2021 — will be able to search for life on exoplanets.

“Rocky planets around white dwarfs are intriguing candidates to characterize because their hosts are not much bigger than Earth-size planets,” said Lisa Kaltenegger, associate professor of astronomy in the College of Arts and Sciences and director of the Carl Sagan Institute.

The trick is to catch an exoplanet’s quick crossing in front of a white dwarf, a small, dense star that has exhausted its energy.

“We are hoping for and looking for that kind of transit,” Kozakis said. “If we observe a transit of that kind of planet, scientists can find out what is in its atmosphere, refer back to this paper, match it to spectral fingerprints and look for signs of life. Publishing this kind of guide allows observers to know what to look for.”

Kozakis, Kaltenegger and Zifan Lin assembled the spectral models for different atmospheres at different temperatures to create a template for possible biosignatures.

Chasing down these planets in the habitable zone of white dwarf systems is challenging, the researchers said.

“We wanted to know if light from a white dwarf — a long-dead star — would allow us to spot life in a planet’s atmosphere if it were there,” Kaltenegger said.

This paper indicates that astronomers should be able to see spectral biosignatures — such as methane in combination with ozone or nitrous oxide — “if those signs of life are present,” said Kaltenegger, who said this research expands scientific databases for finding spectral signs of life on exoplanets to forgotten star systems.

“If we would find signs of life on planets orbiting under the light of long-dead stars,” she said, “the next intriguing question would be whether life survived the star’s death or started all over again — a second genesis, if you will.”

Story Source:

Materials provided by Cornell University. Original written by Blaine Friedlander. Note: Content may be edited for style and length.

Go to Source


How newborn stars prepare for the birth of planets

An international team of astronomers used two of the most powerful radio telescopes in the world to create more than three hundred images of planet-forming disks around very young stars in the Orion Clouds. These images reveal new details about the birthplaces of planets and the earliest stages of star formation.

Most of the stars in the universe are accompanied by planets. These planets are born in rings of dust and gas, called protoplanetary disks. Even very young stars are surrounded by these disks. Astronomers want to know exactly when these disks start to form, and what they look like. But young stars are very faint, and there are dense clouds of dust and gas surrounding them in stellar nurseries. Only highly sensitive radio telescope arrays can spot the tiny disks around these infant stars amidst the densely packed material in these clouds.

For this new research, astronomers pointed both the National Science Foundation’s Karl G. Jansky Very Large Array (VLA) and the Atacama Large Millimeter/submillimeter Array (ALMA) to a region in space where many stars are born: the Orion Molecular Clouds. This survey, called VLA/ALMA Nascent Disk and Multiplicity (VANDAM), is the largest survey of young stars and their disks to date.

Very young stars, also called protostars, form in clouds of gas and dust in space. The first step in the formation of a star is when these dense clouds collapse due to gravity. As the cloud collapses, it begins to spin — forming a flattened disk around the protostar. Material from the disk continues to feed the star and make it grow. Eventually, the left-over material in the disk is expected to form planets.

Many aspects about these first stages of star formation, and how the disk forms, are still unclear. But this new survey provides some missing clues as the VLA and ALMA peered through the dense clouds and observed hundreds of protostars and their disks in various stages of their formation.

Young planet-forming disks

“This survey revealed the average mass and size of these very young protoplanetary disks,” said John Tobin of the National Radio Astronomy Observatory (NRAO) in Charlottesville, Virginia, and leader of the survey team. “We can now compare them to older disks that have been studied intensively with ALMA as well.”

What Tobin and his team found, is that very young disks can be similar in size, but are on average much more massive than older disks. “When a star grows, it eats away more and more material from the disk. This means that younger disks have a lot more raw material from which planets could form. Possibly bigger planets already start to form around very young stars.”

Four special protostars

Among hundreds of survey images, four protostars looked different than the rest and caught the scientists’ attention. “These newborn stars looked very irregular and blobby,” said team member Nicole Karnath of the University of Toledo, Ohio (now at SOFIA Science Center). “We think that they are in one of the earliest stages of star formation and some may not even have formed into protostars yet.”

It is special that the scientists found four of these objects. “We rarely find more than one such irregular object in one observation,” added Karnath, who used these four infant stars to propose a schematic pathway for the earliest stages of star formation. “We are not entirely sure how old they are, but they are probably younger than ten thousand years.”

To be defined as a typical (class 0) protostar, stars should not only have a flattened rotating disk surrounding them, but also an outflow — spewing away material in opposite directions — that clears the dense cloud surrounding the stars and makes them optically visible. This outflow is important, because it prevents stars from spinning out of control while they grow. But when exactly these outflows start to happen, is an open question in astronomy.

One of the infant stars in this study, called HOPS 404, has an outflow of only two kilometers (1.2 miles) per second (a typical protostar-outflow of 10-100 km/s or 6-62 miles/s). “It is a big puffy sun that is still gathering a lot of mass, but just started its outflow to lose angular momentum to be able to keep growing,” explained Karnath. “This is one of the smallest outflows that we have seen and it supports our theory of what the first step in forming a protostar looks like.”

Combining ALMA and VLA

The exquisite resolution and sensitivity provided by both ALMA and the VLA were crucial to understand both the outer and inner regions of protostars and their disks in this survey. While ALMA can examine the dense dusty material around protostars in great detail, the images from the VLA made at longer wavelengths were essential to understand the inner structures of the youngest protostars at scales smaller than our solar system.

“The combined use of ALMA and the VLA has given us the best of both worlds,” said Tobin. “Thanks to these telescopes, we start to understand how planet formation begins.”

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

Go to Source


Oldest galaxy protocluster forms ‘queen’s court’

Using the Subaru, Keck, and Gemini Telescopes, an international team of astronomers has discovered a collection of 12 galaxies which existed about 13.0 billion years ago. This is the earliest protocluster ever found. One of the 12 galaxies is a giant object, known as Himiko, which was discovered a decade ago by the Subaru Telescope and named for a mythological queen in ancient Japan. This discovery suggests that large structures such as protoclusters already existed when the Universe was only about 800 million years old, 6 percent of its present age.

In the present Universe, galaxy clusters can contain hundreds of members, but how these clusters form is a big question in astronomy. To understand the formation of clusters, astronomers search for possible progenitors in the ancient Universe. A protocluster is a dense system of dozens of galaxies in the early Universe, growing into a cluster.

Yuichi Harikane, a JSPS fellow at the National Astronomical Observatory of Japan who led the team of astronomers explains, “A protocluster is a rare and special system with an extremely high density, and not easy to find. To overcome this problem, we used the wide field of view of the Subaru Telescope to map a large area of the sky and look for protoclusters.”

In the map of the Universe made by the Subaru Telescope, the team discovered a protocluster candidate, z66OD, where galaxies are 15 times more concentrated than normal for that era. The team then conducted follow-up spectroscopic observations using the W.M. Keck Observatory and Gemini North telescope, and confirmed 12 galaxies which existed 13.0 billion years ago, making it the earliest protocluster known to date.

Interestingly, one of the 12 galaxies in z66OD was a giant object with a huge body of gas, known as Himiko, which was found previously by the Subaru Telescope in 2009. “It is reasonable to find a protocluster near a massive object, such as Himiko. However, we’re surprised to see that Himiko was located not in the center of the protocluster, but on the edge 500 million light-years away from the center.” said Masami Ouchi, a team member at the National Astronomical Observatory of Japan and the University of Tokyo, who discovered Himiko in 2009. Ironically, the mythological queen Himiko is also said to have lived cloistered away from her people. Ouchi continues, “It is still not understood why Himiko is not located in the center. These results will be a key for understanding the relationship between clusters and massive galaxies.”

Story Source:

Materials provided by National Institutes of Natural Sciences. Note: Content may be edited for style and length.

Go to Source


The rare molecule weighing in on the birth of planets

Astronomers using one of the most advanced radio telescopes have discovered a rare molecule in the dust and gas disc around a young star — and it may provide an answer to one of the conundrums facing astronomers.

The star, named HD 163296, is located 330 light years from Earth and formed over the last six million years.

It is surrounded by a disc of dust and gas — a so-called protoplanetary disc. It is within these discs that young planets are born. Using a radio telescope in the Atacama Desert in Chile, researchers were able to detect an extremely faint signal showing the existence of a rare form of carbon monoxide — known as an isotopologue (13C17O).

The detection has allowed an international collaboration of scientists, led by the University of Leeds, to measure the mass of the gas in the disc more accurately than ever before. The results show that disc is much heavier — or more ‘massive’ — than previously thought.

Alice Booth, a PhD researcher at Leeds who led the study, said: “Our new observations showed there was between two and six times more mass hiding in the disc than previous observations could measure.

“This is an important finding in terms of the birth of planetary systems in discs — if they contain more gas, then they have more building material to form more massive planets.”

The study — The first detection of 13C17O in a protoplanetary disk: a robust tracer of disk gas mass — is published today (12/09/2019) in Astrophysical Journal Letters.

The scientists’ conclusions are well timed. Recent observations of protoplanetary discs have perplexed astronomers because they did not seem to contain enough gas and dust to create the planets observed.

Dr John Ilee, a researcher at Leeds who was also involved in the study, added: “The disc-exoplanet mass discrepancy raises serious questions about how and when planets are formed. However, if other discs are hiding similar amounts of mass as HD 163296, then we may just have underestimated their masses until now.”

“We can measure disc masses by looking at how much light is given off by molecules like carbon monoxide. If the discs are sufficiently dense, then they can block the light given off by more common forms of carbon monoxide — and that could result in scientists underestimating the mass of the gas present.

“This study has used a technique to observe the much rarer 13C17O molecule — and that’s allowed us to peer deep inside the disc and find a previously hidden reservoir of gas.”

The researchers made use of one of the most sophisticated radio telescopes in the world — the Atacama Large Millimetre/submillimetre Array (ALMA) — high in the Atacama Desert.

ALMA is able to observe light that is invisible to the naked eye, allowing astronomers to view what is known as the ‘cold universe’ — those parts of space not visible using optical telescopes.

Booth said: “Our work shows the amazing contribution that ALMA is making to our understanding of the Universe. It is helping build a more accurate picture of the physics leading to the formation of new planets. This of course then helps us understand how the Solar System and Earth came to be.”

The researchers are already planning the next steps in their work.

Booth added: “We suspect that ALMA will allow us to observe this rare form of CO in many other discs. By doing that, we can more accurately measure their mass, and determine whether scientists have systematically been underestimating how much matter they contain.”

Story Source:

Materials provided by University of Leeds. Note: Content may be edited for style and length.

Go to Source